How to Use WorldLand Cloud
This guide explains how to rent GPU resources on WorldLand Cloud as a customer.
Prerequisites
- Wallet (MetaMask or compatible Web3 wallet)
- WL tokens for payment
Step 1: Connect Wallet
- Visit the WorldLand Cloud dashboard
- Click Connect Wallet
- Sign the authentication message
- Your session will be created
Wallet Authentication
WorldLand uses EIP-712 signature-based authentication. No password required - your wallet is your identity.
Step 2: Browse Available GPUs
Navigate to Providers to see available GPU resources:
Available Providers:
┌────────────────────────────────────────────────────────────────┐
│ Provider ID │ GPU Model │ Available │ Price/Hour │
├────────────────┼────────────────┼───────────┼─────────────────┤
│ provider-001 │ RTX 4090 │ 2/4 │ 0.50 WL │
│ provider-002 │ RTX 3090 │ 1/2 │ 0.35 WL │
│ provider-003 │ Tesla T4 │ 4/4 │ 0.25 WL │
└────────────────────────────────────────────────────────────────┘Step 3: Create a GPU Job
Option A: Dashboard UI
- Click Create New Job
- Select provider or GPU type
- Configure resources:
- GPU count
- CPU cores
- Memory
- Storage
- Duration
- Set SSH password
- Click Create
Option B: API
bash
curl -X POST https://api.worldland.cloud/api/v1/jobs \
-H "Authorization: Bearer <your-session-token>" \
-H "Content-Type: application/json" \
-d '{
"provider_id": "provider-001",
"gpu_count": 1,
"cpu_cores": "4",
"memory_gb": "16",
"storage_gb": "50",
"ssh_password": "your-secure-password",
"duration_hours": 24
}'Response
json
{
"job_id": "gpu-0x1234-1706234567",
"status": "creating",
"gpu_count": 1,
"gpu_model": "RTX 4090",
"cpu_cores": "4",
"memory_gb": "16Gi",
"storage_gb": "50Gi",
"ssh_host": "123.45.67.89",
"ssh_port": 30001,
"ssh_user": "root",
"ssh_password": "your-secure-password",
"price_per_hour": 0.5,
"expires_at": "2024-01-26T12:00:00Z",
"message": "GPU container is being created. Check status in a few seconds."
}Step 4: Connect via SSH
Once the job status is Running:
bash
ssh root@123.45.67.89 -p 30001
# Enter your SSH password when promptedStep 5: Use Your GPU Container
Your container comes with:
- NVIDIA CUDA drivers pre-installed
- Root access
- Full GPU access
Verify GPU Access
bash
# Check NVIDIA driver
nvidia-smi
# Example output:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce RTX 4090 | 00000000:01:00.0 Off | Off |
| 0% 35C P8 20W / 450W | 0MiB / 24576MiB | 0% Default |
+-------------------------------+----------------------+----------------------+Install Your Tools
bash
# For PyTorch
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
# For TensorFlow
pip install tensorflow[and-cuda]
# For Hugging Face Transformers
pip install transformers accelerateStep 6: Monitor Job Status
Check Status
bash
curl https://api.worldland.cloud/api/v1/jobs/gpu-0x1234-1706234567 \
-H "Authorization: Bearer <your-session-token>"Job States
| Status | Description |
|---|---|
creating | Container being provisioned |
Pending | Waiting for resources |
Running | Ready for SSH access |
Failed | Error occurred |
Succeeded | Job completed |
Step 7: Terminate Job
When done, delete the job to stop billing:
bash
curl -X DELETE https://api.worldland.cloud/api/v1/jobs/gpu-0x1234-1706234567 \
-H "Authorization: Bearer <your-session-token>"Resource Configuration Guide
Recommended Configurations
| Use Case | GPU | CPU | Memory | Storage |
|---|---|---|---|---|
| Light Inference | 1 | 2 | 8Gi | 20Gi |
| Model Training | 1 | 4 | 16Gi | 50Gi |
| Large Model | 1 | 8 | 32Gi | 100Gi |
| Multi-GPU | 2+ | 16 | 64Gi | 200Gi |
Memory Recommendations by Model Size
| Model Size | Minimum GPU Memory | Recommended System Memory |
|---|---|---|
| 7B params | 16GB | 16Gi |
| 13B params | 24GB | 32Gi |
| 30B params | 48GB (multi-GPU) | 64Gi |
| 70B params | 80GB+ (multi-GPU) | 128Gi |
Troubleshooting
OOMKilled Error
If your container is terminated due to memory:
json
{
"status": "Failed",
"failure_reason": "OOMKilled",
"failure_message": "Container was killed due to memory limit exceeded",
"suggestion": {
"action": "increase_memory",
"recommended_memory": "32Gi",
"message": "메모리가 부족하여 컨테이너가 종료되었습니다. 32Gi 이상의 메모리로 새 Job을 생성해주세요."
}
}Solution: Create a new job with more memory.
SSH Connection Refused
- Wait for job status to be
Running - Verify the correct IP and port
- Check if firewall is blocking the NodePort
GPU Not Detected
bash
# Check if NVIDIA driver is loaded
lsmod | grep nvidia
# Check CUDA installation
nvcc --versionBest Practices
Cost Optimization
- Right-size resources - Only request what you need
- Set appropriate duration - Don't over-provision time
- Delete jobs promptly - Stop billing when done
- Use spot-like pricing - Check for lower-cost providers
Data Persistence
Container storage is ephemeral. Always backup important data before terminating a job. Use external storage for persistent data.
Next Steps
- Portal Guide - Dashboard walkthrough
- API Reference - Full API documentation